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Abstract—Spatial parallel manipulators have a number of
practical applications due to their high reliability, accuracy, and
performance. In this paper we deal with an inverse kinematic
problem for six-degree-of-freedom (6DOF) parallel manipulator
known as modified Stewart platform with rotative-spherical-
spherical (RSS) structure. An effective analytic method for
solving the inverse kinematic problem for given terminal state is
proposed. This method is used for trajectory planning of 6DOF
parallel manipulator. Numerical simulation is considered.

Index Terms—path planning, manipulators, parallel robots

I. INTRODUCTION

In the past years, parallel mechanisms have been case
of study of many researchers due to their applications in
industry research and machinery design. Currently, devices
based on mechanisms of parallel kinematics are widely used
as positioning devices, manipulators and micromanipulators,
vibration stands, simulators, measuring systems, etc. The mul-
tidirectional closed kinematic loop of the mechanism leads
to a decrease in the dimensions and masses of the moving
links. Such devices apply the load like space trusses, which
determine their increased accuracy and carrying capacity.

Parallel manipulators have several advantages: better load
capacity, high accuracy of positioning of the working element,
higher rigidity of the system, high speeds and accelerations of
the working element, high degree of unification of mechatronic
knots. Spatial precision positioning devices are often based on
hexapods or tripods. To overcome the limitations of the serial
manipulator many researchers proposed spatial parallel manip-
ulator including Stewart platform. Many kinds of literature are
available in the field of spatial parallel manipulator [1], [2].

The hexapod is one form of parallel manipulator that is
used increasingly in manufacturing, inspection and research.
The ultimate hexapod would provide large motions for massive
payloads in up to six degrees of freedom with high accuracy,
resolution and repeatability.

Some of the works related to the derivation of the in-
verse kinematics, forward kinematics, workspace analysis and
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singularity analysis of the spatial platform are listed in the
references [4]–[7]. A number of related papers is dedicated
to the inverse kinematics problem for parallel manipulator
structures [8]–[10].

Singular point and behavior of the parallel platforms at their
neighborhood are investigated in papers [11], [12]. In [11] a
method for analysis of numerical location of singular points
of in-parallel actuated manipulators has been proposed, and
the neighborhood of the singular points has been determined
based on the kinematic and static characteristics of in-parallel
manipulators. The operating area of in-parallel actuated ma-
nipulators has been obtained using transmission index. For
details, see [11], [12].

In this paper we propose a simple solution of the in-
verse kinematics problem for hexapod with rotative-spherical-
spherical (RSS) structure. This solution allows to find operat-
ing area zone of hexapod and to solve path planning problem.
The novelty of proposed method consists of trigonometric
function approach. The solution of inverse kinematics is ob-
tained in analytic form. In addition, a problem of multiple
choice of angular orientation of actuators is removed.

The rest paper is organized as follows. In Section II descrip-
tion of the platform, necessary notations, and problem state-
ment are considered. Section III establishes the main results:
inverse kinematics analysis, operating area zone estimation,
and path planning. Conclusive remarks are given in Section IV.

II. PLATFORM DESCRIPTION AND PROBLEM STATEMENT

The mechanism of the parallel structure with rotary drives
(modified Stewart platform) has 6 degrees of freedom and
consists of six kinematic chains containing one rotative and
two spherical pairs (see Fig. 1). Construction pattern of the
manipulator is presented in Fig. 2.

Denote input rotative pairs of the section as Ai where
i = 1, 6 is a number of rotative pairs. Output spherical pair
of the section are denoted as Bi. Medium spherical pairs are
denoted as Ci. Input and output links are assumed to be ideal
discs. Now we assign local coordinate systems with input
and output sections. Moreover, center of the local coordinate
system is assumed to be in the center of the disc. Axes ojxj
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Fig. 1. 3D-model of the parallel manipulator with 6 rotary drives.

Fig. 2. Construction pattern of parallel structure manipulator with 6 rotary
drives.

and ojyj , j = 0, 1 lie on the surface of lower and upper discs
respectively. Axes ojzj are orthogonal to these surfaces. Let
input and output pairs be located on the vertexes of regular

hexagons with radiuses R and r respectively. Lengths of the
segments AiCi and CiBi are denoted l1 and l2 respectively.

Joint coordinates are defined through angular coordinate of
the first joint ϕb and angular coordinate of the moving platform
ϕmp. We will use the angles between the coupling link con-
necting the input kinematic pair Ai with the medium spherical
pair Ci, and the normal to the plane of the platform base as
the generalized coordinates of this mechanism. Generalized
coordinates are denoted as θi, i = 1, 6.

Inverse kinematic analysis problem for parallel structure
manipulator can be formulated in the following way.

Problem: for a given position of the center point and angle
position of the output section find generalized coordinates of
the platform, i.e. angle positions θi.

III. MAIN RESULTS

A. Inverse Kinematic Analysis

In order to solve this problem, we write uniform coordinates
of the joints in fixed coordinate system as follows:

A =


a1,1 a1,2 a1,3 a1,4
a2,1 a2,2 a2,3 a2,4
a3,1 a3,2 a3,3 a3,4
1 1 1 1

 (1)

where
a1,1 = R cosϕb, a2,1 = R sinϕb,
a1,2 = R cos

(
2π
3 − ϕb

)
, a2,2 = R sin

(
2π
3 − ϕb

)
,

a1,3 = R cos
(
2π
3 + ϕb

)
, a2,3 = R sin

(
2π
3 + ϕb

)
,

a1,4 = R cos
(
4π
3 − ϕb

)
, a2,4 = R sin

(
4π
3 − ϕb

)
,

a1,5 = R cos
(
4π
3 + ϕb

)
, a2,5 = R sin

(
4π
3 + ϕb

)
,

a1,6 = R cos(−ϕb), a2,6 = R sinϕb,

and a3,1 = a3,2 = a3,3 = a3,4 = a3,5 = a3,6 = hb.
Uniform coordinates of the moving platform in moving

coordinates are equal to

B̃ =


b̃1,1 b̃1,2 b̃1,3 b̃1,4
b̃2,1 b̃2,2 b̃2,3 b̃2,4
b̃3,1 b̃3,2 b̃3,3 b̃3,4
1 1 1 1

 (2)

where

b̃1,1 = R cosϕmp, b̃2,1 = R sinϕmp,

b̃1,2 = R cos
(
2π
3 − ϕmp

)
, b̃2,2 = R sin

(
2π
3 − ϕmp

)
,

b̃1,3 = R cos
(
2π
3 + ϕmp

)
, b̃2,3 = R sin

(
2π
3 + ϕmp

)
,

b̃1,4 = R cos
(
4π
3 − ϕmp

)
, b̃2,4 = R sin

(
4π
3 − ϕmp

)
,

b̃1,5 = R cos
(
4π
3 + ϕmp

)
, b̃2,5 = R sin

(
4π
3 + ϕmp

)
,

b̃1,6 = R cos−ϕmp, b̃2,6 = R sinϕmp,

and b̃3,1 = b̃3,2 = b̃3,3 = b̃3,4 = b̃3,5 = b̃3,6 = −hb.
Uniform transformation matrix describing the transition

between moving and fixed coordinate systems is considered
to be known, and equal to

T =


d1,1 d1,2 d1,3 x0
d2,1 d2,2 d2,3 y0
d3,1 d3,2 d3,3 z0
0 0 0 1

 (3)
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Fig. 3. Possible directions of rotation of the i-th kinematic chain.

where di,j , i, j = 1, 3 are direction cosines of unit normal
vector, and x0, y0, z0 are coordinates of the displacement
vector.

Taking into account (2) and (3), we get coordinates of joints
of the moving platform as

B = TB̃. (4)

To solve inverse kinematic problem, we consider i-th kine-
matic chain of the platform. Let the positive direction of
rotation be clockwise direction. Link AiCi rotates in both
clockwise and counterclockwise directions. This leads to mul-
tiple solutions of the problem. Possible ways of rotation are
depicted in Fig. 3. Variants of rotation in clockwise direction
corresponds to pictures 3) and 4) in Fig. 3. Variants of rotation
in counterclockwise direction corresponds to pictures 1) and
2) in Fig. 3. It is easy to see, that generalized coordinates θi
are defined as

θi = θ
′

i + αi (5)

or
θi = θ

′

i − αi (6)

for the cases 1), 4) and 2), 3) respectively.
Angle θ

′

i of the triangle AiCiBi can be found from cosine
theorem as follows

θ
′

i = acos

(
l22 − l21 − ‖AiBi‖2

−2l1‖AiBi‖

)
(7)

where ‖AiBi‖2 = (bi,1−ai,1)2+(bi,2−ai,2)2+(bi,3−ai,3)2.

TABLE I
HEXAPOD PARAMETERS

Description Value Unit
Base radius, R 170 mm
Moving platform (MP) radius, r 160 mm
Angle coordinate of first base joint, φn π/6 rad
Angle coordinate of first MP joint, φmp π/18 rad
Distance from base joints to rotation axis, hn 45 mm
Distance from MP joints to rotation axis, hmp 15 mm
Length of the link, l1 68 mm
Length of the link, l2 168 mm

Angle αi are defined as

αi = atan

(
bi,2 − b̃i,2

bi,3

)
. (8)

Here bi,j are elements of matrix B from (4).

B. Operating area zone analysis

We consider a 6DOF parallel manipulator with the following
parameters (see Table I).

Solution of the inverse kinematic problem (7)–(8) can be
applied in construction of operating area zone. In order to
avoid multiple solutions of the inverse kinematic problem, we
consider that angle coordinates of moving links AiCi for i =
1, 2, 3 are defined by (5) when y0 > 0 and by (6) otherwise.
Angle coordinates of moving links AiCi for i = 4, 5, 6 are
defined by (6) when y0 > 0 and by (5) otherwise. Rotation
angles of rotary drives are limited by −90...90 degrees. For
the simplicity, we suppose that angle position of the moving
platform is equal to zero (i.e. the moving platform is parallel
to the base section). We propose the following algorithm to
construct operating area zone:

1) Define the space area O ∈ R3 of possible position of
the moving platform center and step of grid h.

2) For each point Ok(x, y, z) ∈ O solve inverse kinematic
problem (7)–(8).

3) Check if solution θi, i = 1, 6 satisfy the following
conditions:

C1: θi ia real value,
C2: −90 6 θi 6 90.

4) If conditions C1–C2 are satisfied, then Ok belongs to
the operating area zone

5) Repeat steps 2)–4) for all points of the area O.
We used the following parameters xO ∈ [−130; 130],

yO ∈ [−130; 130], zO ∈ [210; 290], and grid step h = 0.5.
Operating area zone built using above mentioned algorithm
is depicted in Fig. 4. Axe z corresponds to the height of the
hexapod in millimeters. Contour curves of the upper bound
and lower bound of operating area zone are depicted in Figs.
5 and 6 respectively. at the right of the contour areas there is
a legend of hexapod height.

C. Path planning

Results, obtained above, can be successfully used in path
planning problem. In this case the problem is to find a set of
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Fig. 4. Operating area zone.

Fig. 5. Contour curves of upper bound of the operating area zone.

angle positions of the rotary drives that allows to follow given
spatial curve given as a set of points. Clearly, given trajectory
should lie inside operating area.

To illustrate effectiveness of the proposed inverse kinematic
problem solution in trajectory planning problem, we consider
the following reference trajectory, describing spatial spiral
curve represented in Fig. 7: x = 30 sin 0.4s,

y = 30 cos 0.4s,
z = 1.5s+ 225

(9)

where s = 1, 20 is a parameter.
Since trajectory (9) lies inside operating area zone, the

solution (7)–(8) satisfy constraints C1–C2. The solution to the
path following problem (9) is presented in Fig. 8.

Fig. 6. Contour curves of lower bound of the operating area zone.

Fig. 7. Reference trajectory.

IV. CONCLUSION

The paper proposes a method for solving the inverse
kinematic problem for the modified Stewart platform with
rotational kinematic pairs (six degrees of freedom) using
matrix algebra. The advantage of this solution is that it can
be generalized to other configurations of the Stewart platform.
It is only necessary to determine the geometric parameters of
the robot, which give us a solution to the problem taking into
account the desired position and orientation.

This method was successfully applied to the estimation of
the operating area zone of the 6DOF parallel manipulator and
path planning problem. Obtained results can be applied in
industrial and human robotics.
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Fig. 8. Solution to the path following problem (9).
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